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The foundational paradigm of robotics is undergoing a historic transformation. We are moving
decisively away from brittle, hand-engineered pipelines and into an era of learned, end-to-end
systems that seamlessly couple perception, language, prediction, and control. This shift is not driven
by incremental improvement, but by a Great Convergence: the rapid merger of foundational Al
breakthroughs with advanced robotics hardware.
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Since the watershed year of 2022, the pace of this convergence has accelerated significantly. The rise
of large language models (LLMs) and diffusion models has provided the critical "brain” for semantic
reasoning, while investments in humanoid and quadruped robotic platforms have built the necessary
"body." Now, as we head into 2024 and beyond, we are witnessing an explosion of embodied
foundational models—Al systems trained not only on text and images but also on experience with
physics, behavior, and causal relationships.
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This article deconstructs the core architectural components powering this revolution:

e Visual-Language-Action (VLA) Models act as the robot's high-level reasoning cortex,
translating pixel inputs and language commands like "Tidy this room" into structured action
sequences.

o World Models serve as an internal prefrontal cortex for mental simulation, enabling the
robot to predict the outcomes of its actions and plan complex tasks through internal
deliberation.

e VLA-RL (Reinforcement Learning) provides the mechanism for specialized skill
optimization, fine-tuning a generalist VLA's policies through practice to achieve robust, real-
world performance.

e Brain + Cerebellum Architectures offer a bio-inspired blueprint for real-time control,
separating high-level "what" planning in the brain from low-level, ZF4Z% "how" execution in
the cerebellar controller.

Critically, these components are not competing alternatives. They are complementary layers now
being integrated into unified cognitive stacks. Frameworks like RoboBrain 2.0 exemplify this next
step: no single model is the solution. Instead, the future lies in an "internet of robot intelligence"—
an ecosystem where specialized models (vision, language, action, simulation) are composed into a
cohesive, hierarchical mind.

The impact of this convergence is profound. For developers, it means building with powerful pre-
trained primitives rather than from scratch. For managers and strategists, it signals that general-
purpose robots capable of understanding, adapting, and acting safely in human spaces are no longer
a distant fantasy but a tangible engineering roadmap. The race is no longer just about building a
better motor; it is about encoding the common sense and physical intuition necessary to operate in
our world. This article explores the architectures that will get us there.

The following sections will deconstruct each of these components in detail, providing a technical
foundation for developers and a strategic overview for decision-makers, ultimately painting a clear
picture of how these pieces converge in systems like RoboBrain 2.0 to finally bring capable, general-

purpose robots into our homes and workplaces.
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How Do Robots Make Decisions?

Think of a robot's decision-making system like its personal playbook. This playbook contains all the
instructions for what to do in different situations. The official term for this playbook is a "policy."

Simply put, a policy is the robot's game plan. It's the set of instructions that tells the robot how to
behave to get from where it is now to where it needs to be.

There are two main ways to write this playbook:

1. A Strict Playbook: For every specific situation, there is one exact move to make. (See a red
light? Stop immediately.)
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2. A Flexible Playbook: For some situations, there might be a few good options, each with a
different chance of success. (See an obstacle? There's an 80% chance going left is best, and a

20% chance going right is better.)
How does the robot learn its playbook?

Robots learn through practice, much like how a person learns to play a video game. They try different
moves, see what works and what doesn't, and slowly improve their strategy. Each complete attempt
at a task—from start to finish—is like one practice game.

The goal is always to finish the game with the highest score possible. The robot figures out which
actions earn it points (rewards) and which cause it to lose points (mistakes), and it updates its
playbook to try and get a better score next time.

The Old Way vs. The New Goal

In the past, engineers had to write a brand new, highly specific playbook for every single tiny task and
for every different type of robot. This was incredibly slow, expensive, and the robots couldn't handle
anything unexpected.

The new goal is far more ambitious: to create a universal playbook. We want to build robots that

can:
e Look at a messy, real-world environment.
e Understand a simple instruction like, "Please help me tidy up.”
e Figure out the steps needed to complete the job on their own.

This means moving from robots that are programmed for one specific action to machines that can
understand, learn, and adapt to our world on their own

VLA — #5%8- 55 - ERE (“FR. BR. i7"
VLA — Visual Language Action ("See, Understand, Do")
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The Core Idea in a Nutshell
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A Visual Language Action (VLA) model is a single, end-to-end artificial intelligence model that
allows a robot to:

1. See its environment (through images or video from its camera).
2. Understand a complex, natural language command from a human.
3. Plan and Execute a sequence of physical actions to complete the task.

In essence, it translates "what you see and what you're told" directly into "what you should do."
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Problems VLA Addresses

N

Traditionally, robot control pipelines were fragmented into separate modules:
1. Perception Module: Identify objects and their locations.

2. Planning Module: Use pre-programmed logic to decide a path or action based on the perception
output.

3. Control Module: Execute low-level motor commands.

This approach was brittle. If an object wasn't in the pre-defined list or the command changed slightly
("pick up the xapplex" vs. "grab the *red fruit+"), the entire system would fail. It lacked common sense
reasoning.
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Key Advantages of VLAs

* Generalization: A single model can perform a vast number of tasks it wasn't explicitly
programmed for, as long as they were in its training distribution.

* Natural Interaction: Anyone can give commands without learning a programming language.

* Common Sense: They can incorporate world knowledge from their language model training
(e.g., knowing that "cold drinks" are likely found in a "refrigerator”).
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Key Disadvantages of VLAs

o Extremely Data Hungry: Requires astronomical amounts of real-world robot data, which is slow,
expensive, and dangerous to collect.

+ "Black Box": Very difficult to debug. If the robot falls, is it because of a vision error, a planning
error, or a control error?

o Lacks Safety & Guarantees: It's hard to build in hard-coded safety constraints (e.g., "don't hit
yourself").

e Poor Sample Efficiency: Learning low-level control from pixels alone is incredibly inefficient.
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In summary, the VLA model represents a paradigm shift from fragmented, programmed robots
towards unified, learned systems that can understand our world and our instructions in a much more

human-like way. It's a fundamental building block for creating general-purpose robots.
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VLA-RL (Visual-Language-Action models trained with Reinforcement
Learning)

The Core Idea in a Nutshell

VLA-RL (Visual-Language-Action models trained with Reinforcement Learning) is a hybrid
approach that combines the powerful semantic understanding of pre-trained VLAs with the targeted,
goal-oriented optimization of Reinforcement Learning (RL). It takes a generalist VLA and fine-

tunes it to excel at specific tasks, improving its success rate, efficiency, and robustness. Think of it as
taking a broadly intelligent student (the VLA) and giving them specialized vocational training (RL) to
become a master at a specific job.

The Problem VLA-RL Solves

Pre-trained VLAs are impressive zero-shot performers, but they have key limitations:

o Brittleness: They can fail on tasks that are perceptually or physically similar to their training
data but require slightly different reasoning.

o Sub-Optimality: They may succeed at a task but in a slow, inefficient, or unnatural way (e.g.,

awkward gripper orientations, unnecessary movements).

* No Improvement: They don't learn from their own mistakes. If a VLA fails a task, it will likely
fail the same way every time.

 Reward-Agnostic: They don't understand complex, non-binary goals like "be efficient," "be
safe,” or "minimize energy use."
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VLA-RL addresses this by using RL to continue the learning process /n the target environment,

aligning the model's behavior with a precise performance metric (the reward function).
The Three Parts of "VLA-RL"

The name signifies the components and the method:

1. Visual (The "Pre-trained Eyes")

e What it is: The visual encoder from a pre-trained VLA (e.g., a CLIP-like model). This provides a
rich, semantic understanding of the scene.

e Role in VLA-RL: This component is typically frozen (not updated during RL training). Its
purpose is to provide a strong, general-purpose feature representation of the input image
that the RL agent can build upon. It saves the RL algorithm from having to learn vision from
scratch.

2. Language (The "Pre-trained Brain")

« What it is: The language and policy backbone of the pre-trained VLA. This is the model that
has learned to associate visual scenes and language instructions with actions.

e Role in VLA-RL: This is the core network that is fine-tuned. It starts with a strong prior—it
already knows general concepts like "grasp,” "push,” and "move to." RL training adapts and
refines these existing skills for a specific purpose.

3. Action + RL (The "Specialized Trainer")

o What it is: The action-output layer of the VLA, now connected to a Reinforcement Learning
algorithm (e.g., PPO, DDPG).

e Role: This is the learning mechanism. The RL algorithm uses a reward function to critique the
VLA's actions and tell it how to improve.

o The VLA acts as a highly intelligent policy network initialization for the RL algorithm.

o The RL algorithm provides the gradients needed to tweak the VLA's weights to

maximize cumulative reward.
Key Advantages of VLA-RL

+ Massive Sample Efficiency vs. RL-from-Scratch: RL is notoriously data-hungry. Starting from
a pre-trained VLA is like starting a race halfway to the finish line; it requires far fewer

environmental interactions.

o Better Final Performance: It achieves higher success rates and more robust performance than

the original VLA or an RL agent trained from scratch.

o Alignment with Complex Goals: Can optimize for nuanced objectives that are hard to

demonstrate (e.g., "be energy-efficient,” "be gentle with the object").

[Type here] JEEBEERBRAE [Type here]



o Adaptation: Allows a general VLA to adapt to the specific dynamics of a new robot or a new

environment it wasn't trained on.
Current Challenges and Limitations

o Extremely Data Hungry: Training from pixels to actions requires an enormous amount of
interaction data, which is slow, expensive, and potentially dangerous to collect on real robots.

* Reward Design: Designing a good reward function is famously difficult. A poorly designed
reward can lead to the agent learning to "hack” the reward system instead of doing the
intended task (e.g., learning to cover a sensor instead of solving a problem).

o Safety and Stability: An end-to-end model is a black box. It's very hard to guarantee its
behavior in all possible scenarios, making it risky for real-world deployment, especially around
humans.

* Sim-to-Real Gap: Most training is done in simulation for speed and safety. Transferring the
learned policies to a physical robot in the messy real world remains a significant challenge.
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The Core Idea in a Nutshell

A World Model is an internal, learned simulation of the environment inside a robot's "mind." Instead

of reacting directly to raw sensory inputs, the robot uses this model to:

1. Predict the future consequences of its actions.
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2. Imagine and evaluate possible action sequences without trying them in the real world.
3. Choose the best sequence of actions to achieve a goal.

In essence, it enables the robot to "think before it acts,” planning in a internal dream-like space
rather than through costly trial and error in reality.

The Problem World Models Solve

Traditional robots often operate on a reactive sense-plan-act cycle. This can be inefficient and
fragile:

* |t struggles with long-term planning. What is good *now* might be bad in 5 seconds.

* |t requires trying actions in the real world to see what happens, which is slow, and potentially
dangerous or damaging.

* |t can be fooled by incomplete or noisy observations (e.g., an object is temporarily hidden).

World Models introduce forethought and reasoning, allowing the robot to test hypotheses
internally.

The Core Components of a World Model

A typical world model architecture consists of three key parts:

1. Representation (The "Observer" Part)

* Input: High-dimensional, raw sensory data (pixels from a camera, proprioception data).

* Function: This component compresses the vast and noisy real-world observation into a compact,
meaningful, and abstract representation. This is often called a latent state or latent space.

* |t throws away irrelevant details (e.g., shadows, textures) and keeps only the information crucial
for predicting what happens next (e.g., object positions, velocities, their relationships).

* Analogy: You don't remember a scene as every pixel of light; you remember "a cup is about to
fall off the table." The representation is that simplified, conceptual understanding.

2. Dynamics (The "Predictor"” Part)
* Input: The current latent state and a proposed action.

* Function: This is the heart of the world model. The dynamics model predicts the *next* latent
state. It answers the question: "If | am in state *s* and take action *a*, what will my state *s's be?"

* |t learns the rules and physics of the environment. For example, it learns that "if you push a

block, it will slide," or "if you turn the wheel left, the car will go left."

* This model can be rolled forward multiple times to simulate long sequences into the future.
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3. Prediction (The "Planner" Part)
* Input: The current state representation and a goal.

* Function: This component uses the dynamics model to imagine different futures. The most
common method is Model Predictive Control (MPC):

1. Imagine: The robot generates many random sequences of potential actions.

2. Simulate: It uses the dynamics model to "roll out” each sequence in its internal model,
predicting the outcome of each potential future.

3. Evaluate: It compares these predicted outcomes to the desired goal. Which sequence gets
closest to the goal?

4. Act: It executes only the «firstx action from the best sequence.

5. Repeat: It observes the new real state, updates its representation, and starts the process all over
again. This constant re-planning makes it robust to errors in the model.

Key Advantages of World Models

*  Sample Efficiency: They can learn effective policies with fewer real-world interactions because
they learn from simulated "imagined” experiences.

* Safe Planning: Dangerous actions can be tried and discarded in the simulation without real-world

consequences.

* Handling Partial Observability: The latent state can learn to infer hidden information (e.g., if an
object is occluded, the model can still maintain a belief about where it *should* be).

* Generalization: A good dynamics model that understands physics can generalize to new objects
and environments it hasn't seen before, as long as the underlying rules are similar.

Key Disadvantages of World Models

o "Reality Gap": The learned model will always have inaccuracies. Small errors in prediction can
compound over long planning horizons, leading to completely wrong plans.

o Computationally Expensive: Running thousands of simulations for every decision is very slow
unless the model is extremely fast.

e Model Mismatch: It's challenging to build a world model that is both detailed enough for precise
low-level control and fast enough for real-time planning.

VLA-RL is a ambitious framework for creating general-purpose robotic agents. It aims to build a
single model that directly connects perception and language to action, learning optimal
behavior through trial-and-error reinforced by rewards, with the ultimate goal of creating
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robots that can perform a wide range of tasks in human environments following natural
instructions. It's a key research direction for companies like Google DeepMind, OpenAl, and NVIDIA.
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The Core Idea in a Nutshell

The Brain + Cerebellum system is nature's evolutionary solution for sophisticated, adaptive control. It
separates the problem into two complementary systems:

1. Cerebrum (Neocortex): The "What" system. Responsible for high-level goal setting, strategic
planning, and conscious intention. It generates a desired outcome.

2. Cerebellum: The "How" system. Responsible for executing smooth, precise, and coordinated

movements. It translates a high-level goal into perfectly timed, low-level motor commands.
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This separation of concerns allows for incredibly adaptive, efficient, and robust control that is far
superior to any monolithic Al architecture for real-time physical interaction.
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The Problem the Brain+Cerebellum Solves

Executing coordinated movement (like reaching for a cup) in a complex, physical world is an
astronomically difficult computation. It requires:

* Precision: Controlling hundreds of muscles with millisecond timing.
*» Adaptation: Constantly adjusting for changes in load, friction, and body state.
* Prediction: Accounting for sensorimotor delays; you can't wait to feel a stumble to correct it.

* Efficiency: Must happen subconsciously, in real-time, without conscious thought.

A single, general-purpose neural network (like a large cortex) is too slow and inefficient for this task.
The brain's solution is specialized hardware.
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The Two Parts of "Brain + Cerebellum”
1. Cerebrum / Neocortex (The "Strategic Commander")

* Function: This is the seat of high-level cognition. In motor control, specific areas like the Motor
Cortex and Premotor Cortex are crucial. Their role is to issue the "motor command" or the desired
goal state.

* Input: Integrates information from vision, language, memory, and planning. (e.g., "l am thirsty,
therefore | want to drink that water").

* Process: Formulates an intention and a rough plan. (e.g., "Reach for the cup”).

* Output: Sends a relatively crude, high-level command down to the spinal cord and cerebellum.
It says "what" to do (e.g., "move the hand to this location"), but not the precise "how."

2. Cerebellum (The "Tactical Operator")

* Function: This is an exquisite sensory-motor prediction and calibration machine. Its role is to
execute the cortex's command flawlessly.

* |Input: It receives a copy of the command from the cortex (xefference copy*). It also receives a
massive stream of real-time sensory feedback from the body (proprioception, balance, vision).

* Process: [t compares the *xintended* movement (from the cortex) with the *actual* sensory
feedback. It detects errors between prediction and reality in real-time (e.g., "the arm is 2mm off
trajectory and moving 5% too slow").

* Output: It sends corrective signals to fine-tune the motor command *as it is happeningx. It
makes movement smooth, coordinated, and accurate. It handles the precise "how." It is essentially a
learned, biological forward model (a type of world model).

Key Advantages of the Brain+Cerebellum Architecture

* Unconscious Efficiency: The cortex is freed from micromanaging details. You can have a

conversation while walking.
* Real-Time Performance: The cerebellum is optimized for ultra-fast, sub-conscious computation.
* Robustness and Adaption: Continuously adapts to changing conditions (weight, fatigue, terrain).

* Learned Smoothness: Through practice, the cerebellum builds a highly accurate internal model,
making skilled movements (like playing piano) effortless.

Key Disadvantages of the Brain+Cerebellum Architecture

o Complex Integration: Requires careful engineering to make all modules communicate effectively.

[Type here] JEEBEERBRAE [Type here]



Potential Bottlenecks: The high-level brain might not be aware of the low-level controller's
limitations, leading to commands that are impossible to execute.

Sub-Optimality: The separation into modules might prevent the emergence of hyper-optimized
behaviors that an end-to-end system might discover.

Brain + Cerebellum — Bio-Inspired Division of Labor

Analogy.

Cerebrum/Neocortex (Brain): deliberative what/why/when—goal setting, task
decomposition, high-level plans.

e Cerebellum: fast, predictive how—smooth low-level control, error correction from efference
copy vs. sensed reality.
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Synthesis: How They All Fit Together

Direction for Humanoid Control

The current front-runner for practical, scalable humanoid control is a hybrid approach that
combines the strengths of all three.

1. A "Brain + Cerebellum" architecture is the most practical starting point. Companies like 1X
Technologies, Figure Al, and Sanctuary Al are heavily using this paradigm. A large
language/vision model (the Brain) understands the world and sets goals, while a traditional
robust controller (the Cerebellum) handles the precise, safe, low-level execution. This is safe,
debuggable, and leverages the revolution in LLMs.

2. World Models are being integrated for mid-level planning. The "Brain" might use a world
model to /magine the outcome of different high-level plans ("if | reach with my left hand, will |
be balanced?") before sending the best trajectory to the "Cerebellum”. This is more efficient
than pure end-to-end learning.

3. End-to-End VLAs are the long-term goal but are currently used as components, not the
whole system. We might see an end-to-end model trained to output mid-/evel
commands (like gripper pose trajectories), which are then passed to a stable controller. Pure
end-to-end from pixels to torques is still too unstable and data-inefficient for costly
humanoid hardware.

The most powerful future Al agent will likely incorporate principles from all three:

1. VLA (Cerebrum Analog): To understand a high-level, natural language command ("Make me a
coffee").
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2. World Model (Prefrontal Cortex Analog): To break that command down into a plan and
simulate the steps without physically trying them. ("First, find the kettle, then fill it with water...").

3. Cerebellum-like Controller (Cerebellum Analog): A dedicated, fast, and highly trained
subsystem that takes the planned action (e.g., "pour water") and executes it with precision, adapting
in real-time to slippage, weight changes, and unexpected obstacles.

This bio-inspired architecture would combine the generalization of VLAs, the foresight of World
Models, and the robust execution of the cerebellar principle.
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RoboBrain-2.0 — An Ecosystem, Not a Single Model

It's important to understand that "RoboBrain-2.0" isn't a single, monolithic Al model you can
download. Instead, it's best thought of as a massive, open-source project and ecosystem designed
to accelerate progress in robotics and embodied Al. It's a foundational infrastructure for building and
connecting various Al components.

Think of it as the "Github" or "Android Open Source Project (AOSP)" for robotics Al

........................................................................................
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1. Core Concept: The "Internet of Al" for Robots

The central thesis of RoboBrain-2.0 is that no single lab or company can build general-purpose robot
intelligence alone. The goal is to create a decentralized, community-driven platform where
researchers worldwide can:

o Contribute: Share their trained Al models (for perception, manipulation, navigation, etc.).
o Compose: Easily chain these models together to create complex robotic behaviors.
o Use: Access state-of-the-art capabilities without training from scratch.

It's a "brain” built by connecting many smaller, specialized "brains” from across the internet.

2. Key Innovations and Components

RoboBrain-2.0 is built on several key ideas that differentiate it from previous approaches:

a) The rt-2 Model Architecture
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At its heart, RoboBrain-2.0 often leverages models like RT-2 (Robotic Transformer 2). RT-2 is
a Vision-Language-Action (VLA) model.

 What it does: It takes in camera images and a natural language command (e.g., "move the
banana to the cup”) and outputs low-level robot actions.

 How it's special: It's trained on a massive mixture of web data (images and text) and robot
data (images and actions). This allows it to transfer knowledge from the vast internet to the
physical world, enabling emergent reasoning (e.g., understanding what a "banana” is and that
it can be moved, even if it never performed that exact action during training).

b) The rpm (Robotics Primitive Modules) Framework

This is the "composable” part. RoboBrain-2.0 provides a library of pre-trained modules that can be
chained together like Lego blocks. Examples include:

o rpm_affordance: Predicts where and how an object can be interacted with (e.g., where to grasp
a mug).

e rpm_tracking: Tracks an object's motion over time.

e rpm_caption: Describes a scene in natural language.
A developer can write a simple script that chains these modules: see object -> describe it ->
calculate how to grasp it -> execute grasp.

c) Open-Source and Decentralized

This is perhaps its most defining feature. The project is built to be open-source, allowing anyone to
contribute new modules or improve existing ones. This creates a network effect: the more people use
and contribute, the more powerful and valuable the entire ecosystem becomes.

Table 4 Performance across three temporal reasoning benchmarks. The best results among different models are
highlighted in bold, while the second-best results are underlined.

Models /Metrics Multi-Robot Planning ‘ Ego-Plan2 RoboBench
Super. Rest. House. All7] | Daily. Hobbies. Rec. Work, Al Plan. *
General Baselines
Gemini-2.5-Pro-preview-05-06 63.51 5477 7839 6539 | 44.19 13.05 16.45 3960 42.85 63.49
Gemini-2.5-Flash-preview-04-17 | 59.44 5578 T76.88 63.86 | 38.72 35.59 13.72 3342 37.09 69.33
GPT-04-mini-2025-05-16 63.32 55.28 7889 65.50 | 47.61 35.93 1262 37.13 A41.11 70.01
GPT-40-2024-11-20 77.80 6734 7940 7450 | 47.38 10.00 14.81 3564 41.79 6R.60
Claude-Sonnet-4-2(125-05-14 73.08  61.81 8040  T1.30 | 43.51 11.02 12,62 3887  41.26 70.21
Qwen2.5-VE-32B-Instruct 67.81  61.81 75.38  68.00 | 64.46 51.53 57.92  50.00 56.25 15.92
Qwen2.5-VL-T2B-Instruct 77.30  G6R.34 0 7940  T4.67 | 60.36 48.14 6339 46G.29 53.75 66.94
Embodied Baselines
Cosmos-Reasonl-78 3517  25.62 40.70  33.66 | 30.75 27.12 31.69 2030 26.87 53.17
VeBrain-RB 11.70  35.67 3969 3883 | 3L..79 35.31 3119 3443 27.30 46.77
Magma-8B 1.56 3.39 6.56 2.97 1.09
RoboBrain-7B-1.0 1.52 7.04 5.03 5.50 38.93
RoboBrain-38-2.0 8291 7286 8492 79.33 | 45.33 39.66 4590 3762 41.79 46.70
RoboBrain-7B-2.0 83.92 7739 8442 8150 | 39.11 32.20 33.88 2698 33.23 72.16
RoboBrain-32B-2.0 8442 7236 8543 80.33 | 64.01 53.22 57. 5248 57.23 68.33
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Crucially, RoboBrain-2.0 is not mutually exclusive with these. It can contain VLA models like RT-2

as powerful "primitives" within its library. It's the overarching framework for organizing them.

In summary, RoboBrain-2.0 is not just another Al model. It is an ambitious, open-source

infrastructure project aiming to create a collective "brain” for robots by seamlessly connecting

Al models from research labs all over the world. Its goal is to solve the problem of general-

purpose robot intelligence through global collaboration and composability, rather than isolated

competition.
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Synthesis — A Practical Hybrid Stack for Humanoids

1. Instruction Understanding (VLA/LLM). Parse goals and constraints; ground language in
perception.

2. Foresight (World Model). Simulate candidate plans; select a feasible, safe trajectory or
sub-goals.

3. Execution (Cerebellar Controller). Low-latency control with predictive error correction and

reflexes.
4. Specialization (VLA-RL). Online/episodic fine-tuning to the task, robot, and environment.

5. Composition (RoboBrain-2.0). Orchestrate shared modules (perception, grasping,
navigation, speech) into full behaviors.

Result: Generalization from VLAs, foresight from World Models, real-time robustness from cerebellar
control, and task-level optimality from RL—stitched together via a composable ecosystem.
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Conclusion: The Hybrid Path to Embodied Intelligence

The journey toward general-purpose robots is converging on a critical insight: the solution is neither
a single, monolithic Al model nor a collection of disconnected modular programs. The future lies

in hybrid, bio-inspired architectures that integrate the distinct strengths of VLAs for semantic
understanding, World Models for foresight and planning, VLA-RL for robust optimization, and a
Brain+Cerebellum structure for real-time, stable control.

This integrated approach is not merely theoretical; it is being actively pioneered by innovative micro-
SMEs in industrial R&D. A prime example is Beijing Tangta-Technology, a technology-certified SME
(2024, 2025) and certified innovative SME (2025-2027) based in Beljing Haidian. The company is
developing a next-generation cognitive brain based on a modular "Brain + Cerebellum™ structure.
Their research explicitly mirrors the biological separation of intelligence:

e The "Brain" module acts as the high-level commander, integrating vision and language (VLA-
like functions) for task comprehension and deliberate planning (World Model-like functions).

o The "Cerebellum" module functions as a dedicated, low-level controller, ensuring dynamic
balance, compliant force control, and millisecond-level adjustment for safe and stable
locomotion and manipulation.

By architecting their system this way, Tangta-Technology is tackling the core challenge of modern
robotics: uniting high-level reasoning with high-level reliability. Their work, exemplifies the pragmatic
industrial path forward: composing specialized sub-systems into a unified cognitive stack, much
like the vision of frameworks such as RoboBrain 2.0.

This trend confirms that the most capable robots will not have one mind, but many—a cohesive
"society of models” where each component excels at its specific role. To fasten the development of
this technology vision, Tangta-Technology is actively seeking angel investment. For investors and
partners looking to engage with cutting-edge embodied Al, we encourage you not to hesitate to
take contact with us and explore the potential of this foundational technology.
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